IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 40 (2003) 3787-3805

Three-dimensional asymptotic stress field in the vicinity
of the circumference of a penny shaped discontinuity

Reaz A. Chaudhuri *

Department of Materials Science and Engineering, University of Utah, Salt lake City, Utah 84112, USA
Received 2 October 2001; received in revised form 25 November 2002

Abstract

An eigenfunction expansion method is presented to obtain three-dimensional asymptotic stress fields in the vicinity
of the front of a penny shaped discontinuity, e.g., crack, anticrack (infinitely rigid lamella), etc., subjected to the far-field
torsion (mode III), extension/bending (mode I) and sliding shear/twisting (mode II) loadings. Five different disconti-
nuity-surface boundary conditions are considered: (i) penny shaped crack, (ii) penny shaped anticrack or perfectly
bonded thin rigid inclusion, (iii) penny shaped thin transversely rigid inclusion (frictionless planar slip permitted), (iv)
penny shaped thin rigid inclusion in part perfectly bonded, the remainder with frictionless slip, and (v) penny shaped
thin rigid inclusion alongside penny shaped crack. The computed stress singularity for a penny shaped anticrack is the
same as that of the corresponding crack. The main difference is, however, that all the stress components at the circular
tip of an anticrack depend on Poisson’s ratio under modes I and II.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of a thick plate weakened by an embedded penny shaped crack (Fig. 1) has a long history
dating back to solutions due to Sack (1946) and Sneddon (1946). Sack (1946) was the first to extend
Griffith’s (two-dimensional) theory of rupture to a three-dimensional one by considering a penny shaped
(circular) crack of radius a, subjected to a stress field acting normal to the plane of the crack. By treating the
crack as an oblate spheroid and using Neuber’s solution of the equations of equilibrium in oblate sphe-
roidal coordinate system, Sack (1946) was able to derive the critical value of the tensile stress, g., given by
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Fig. 1. A penny shaped discontinuity, associated local coordinate system (p, ¢, 0) and far-field loadings.

where £ and v are Young’s modulus and Poisson’s ratio, respectively, and 7y, is the surface energy of the
material. Sneddon (1946) solved the same problem using a cylindrical polar coordinate system, r, 0, z, where
r = 0 represents the crack tip or front, and z = 0 denotes the plane of the crack. Sneddon’s solution is based
on the method of Hankel transform that reduces the problem to a pair of dual integral equations.

A penny shaped rigid inclusion is essentially a penny shaped crack filled with an infinitely rigid lamella
(in this case, an embedded thin circular platelet or single crystal layer, or atomic hydrogen layer diffused
into metallic lattice or grain boundary), which unlike a crack transmits tractions, but prevents a dis-
placement discontinuity, and has been christened “‘anticrack’ by Dundurs and Markenscoff (1989). Penny
shaped rigid inclusions have important applications in the field of materials science, because they are
idealized representations of various kinds of high modulus reinforcements (e.g., SiC, A1,0s3, etc. in the
form of platelets, etc.), embrittlements (e.g., hydrogen embrittlement (HE)), and are as much a source of
materials failure as cracks. Metallic materials have been known to fail at a level much lower than the (plane
strain) fracture toughness parameter, Kijc, due to cooperative interaction of the applied stress field, and
environmentally assisted cracking (EAC) processes, such as HE, stress corrosion cracking (SCC), etc.
Various models for HE are discussed in standard texts, e.g., Hertzberg (1996). It is presently believed by
materials scientists that molecular hydrogen is dissociated by a chemisorption process on iron, which allows
the liberated atomic hydrogen to diffuse internally into the metallic lattice and grain boundary thus forming
an embrittled layer. Atomic hydrogen can diffuse rapidly through a metal lattice, because its size is smaller
than the lattice parameter. More significantly, hydrogen transport rates in association with dislocation
motion can be several orders of magnitude higher than that due to lattice diffusion (Hertzberg, 1996).

Although the two-dimensional analysis pertaining to the asymptotic displacement and stress fields in the
vicinity of the tip of a rigid line (plane strain/stress) inclusion has received some attention during the last
four decades, e.g., Sih (1965), Atkinson (1973), Brussat and Westman (1974, 1975), Hasebe et al. (1984),
Dundurs and Markenscoff (1989), the corresponding three-dimensional analysis of a penny shaped anti-
crack (infinitely rigid circular lamella) remains, to the author’s knowledge, to be addressed in the literature.
One of the goals of the present study is to fill this analytical gap.

Admittedly, the Hankel transform combined with the dual integral equations approach due to Sneddon
(1946) followed by others is a valuable tool, which can also be employed to solve the penny shaped
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anticrack problem. It is, however, not as simple and straightforward as the eigenfunction approach, pio-
neered by Williams (1952) in two-dimensional analysis of angular corners, and extended to three-dimen-
sional analysis of through cracks and bimaterial interface cracks by Chaudhuri and Xie (2000), and Xie and
Chaudhuri (1998), respectively. It is worthwhile to note here that although the Williams (1952) eigen-
function expansion method for solution to the plane stress problem of a plate with a corner dates back to
the time when the three-dimensional penny shaped crack problem was first addressed by Sack (1946) and
Sneddon (1946), no connection was explored by researchers between the two sets of studies, which is the
primary focus in what follows. Finally, although the eigenfunction method has been successfully imple-
mented to compute the orders of three-dimensional stress singularities at the tips of cracks in homogeneous
materials (Chaudhuri and Xie, 2000) and bimaterial interface cracks (Xie and Chaudhuri, 1998), it has not
been applied to the computation of three-dimensional asymptotic stress field at the circular tip of a penny
shaped discontinuity, such as a crack or anticrack, which is the primary objective of the present investi-
gation.

2. Problem formulation

Fig. 1 shows the schematic diagram of an isotropic elastic body weakened by the presence of a penny
shaped crack or thin rigid inclusion of radius, a, subjected to general far-field loading, and the attached
Cartesian and cylindrical polar coordinate systems, (x, y,z) and (r, 0, z), respectively. The circular tip of the
crack or the thin rigid inclusion weakening the elastic body of infinite extent is located at » = a, a being the
radius, while the mid-plane of the body is located at z =0, the same as the plane of the crack or rigid
inclusion.

The key step is the selection of an appropriate local coordinate system (see Fig. 1(a)). A local curvilinear
coordinate system (p, ¢, 0) is convenient to describe the local deformation behavior of the afore-mentioned
elastic body in the vicinity of the tip of the penny shaped crack or thin rigid inclusion. The components of
the displacements in the radial and tangential directions are represented by U,, U,, while the component in
the circumferential or 0-direction is denoted by Uj.

The local coordinate system is, as mentioned above, comprised of p, which denotes the radial direction
from a point located on the circular tip of the crack or rigid inclusion, ¢ which denotes the angular di-
rection measured counterclockwise from the plane of the penny shaped crack or thin rigid inclusion, and 6,
which is positive counterclockwise (looking from top) along the boundary of the crack or rigid inclusion.
Then the covariant and contravariant components of the base and reciprocal base vectors, called the
Euclidean metric and associated metric tensors, are derived, which yield the components of the Christoffel
three-index symbol of the second kind (Fung, 1965; Green and Zerna, 1968; Korn and Korn, 1968). Fi-
nally, the strain—displacement relations and equations of equilibrium in terms of the physical components
of the displacement vector are derived below.

The line element in the local curvilinear coordinate system (p, ¢, 0) is given by

ds® = dp® + p*d* + (a + pcos p)2d0? ~ dp® + p*d¢* + a*d6?, (1a)
since, it is assumed that
peospl<lpl < 1 p=". (1b)

This assumption is consistent with the objective of investigation of the boundary layer effect caused by the
presence of a penny shaped crack or anticrack in line with the Griffith-Irwin theory.

Since the local coordinate system (p, ¢, 0) is orthogonal, the components of the Euclidean metric and
associated metric tensors, g; and g¥, i, j = 1, 2, 3, respectively, are given by
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gun=1 gn=p", gurd (2a)
and
1 1
g =1, gzzzpy g33%;; (2b)
for p <« a.

The nonvanishing components of the Christoffel three-index symbol of the second kind, associated with

a scheme of measurement in a Riemann space, and defined by
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can be written as follows:
1
Fézz_% F%zzfglzz‘ (4)

The kinematic relations concerning the physical components of the engineering strain in terms of the
physical components of the displacement vector can then be written as follows:
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Substitution of the kinematic relations, given by Eq. (5) and linear elastic isotropic constitutive relations
(Hooke’s law) into the equilibrium equations,

Oije :Oa l,f: 1a2737 (6)

in which the subscripts denote covariant components and / represents covariant differentiation, the equa-

tions of equilibrium (in the absence of body forces) in terms of the physical components of the displacement
vector U,;, Uy;, and Uy;, j = 1,2, can be derived as given below (p < a):

A QU, (A+26)3U, . U, G®U, (4+G)®U, (i+3G)aU,
I 2G) L+ T (4 26) L = 2 -
U2 e * 2 WPt e T aee T 2 0
G *U, (i+G)*Uy
a? of a a0 (7a)
(1+G) PU, (A+3G)dU, U, U, .U, *U, G RU,
0 6O 68 Gy y26) S 20
o st 7 0 o Sy G T e e

(1+G) QU

o 7b
ap 006 (75)
(A+G) U, (A+G)dU, (A+G) Uy (2+42G) Uy U, oUuy G U,
a 0pdld + a pdd * a  pdopdl + a? 00> +G op? * Gp@p * P2 o¢p* %
(7¢)

where 1 and G are Lame’s constants. The correct solution must satisfy the governing partial differential
equations and boundary conditions. The boundary conditions prescribed at the top and bottom surfaces of
the penny shaped crack or thin rigid inclusion can be written as follows:
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(i) Penny shaped crack:
p==xn: 045="1p =140 =0. (8)
(i) Penny shaped anticrack or perfectly bonded thin rigid inclusion:
p==dn: Uy=U,=U,=0. 9)
(iii) Penny shaped thin transversely rigid inclusion (frictionless planar slip permitted):
p==En: Uy=1,=Uy=0. (10)

(iv) Penny shaped thin rigid inclusion in part perfectly bonded (a < r < b), the remainder with frictionless
slip (0 <r<a) as shown in Fig. 2:
(a) Forr=a:

¢:OI U(;):UPZU(;:O; (1121)

p=2n: Uy=71,4 =714 =0. 11b
¢ P 4

(b) For r = b:

The boundary conditions and analytical procedure are the same those for the anticrack (Case (ii))
discussed above, except that « is replaced by 4 in the derivation, and hence will not be discussed
further.

(v) Penny shaped thin rigid inclusion alongside penny shaped crack:
d): —T: Op = Tpp = Tpo =0. (12b)

The solution sought must satisfy the governing equations (7) and one of the five combinations of
boundary conditions (8)-(12) listed above.

Fig. 2. Penny shaped thin rigid inclusion in part perfectly bonded, the remainder with slip.
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3. Solution strategy

The assumed displacement functions for the three-dimensional plate problem under consideration
are selected on the basis of separation of variables in a manner similar to their counterparts for the three-
dimensional crack problem investigated earlier by Chaudhuri and Xie (2000). These are as given below:

Uy(p, §,0) ="' ®,($)R,(p) = " ""’R,(p); (13a)
Up(p, §,0) = "Dy ($)Ry(p) = 7" Ry (p); (13b)
Up(p, ,0) = " ®y(p)Ro(p) = "7 Ry(p); (13¢)

where o € Z, the set of integers. It may be noted that since the §-dependent term is nonsingular and pe-
riodic, it can be best represented by Fourier series. Substitution of Eq. (13) into Eq. (7) yields the following
system of coupled ordinary differential equations (ODE’s) valid for p < a:

d’R, (1+2G) dR, G (A+G) dR; (4+3G)
+26) L4 T (426G ”+—2R+ — 2R
* )d i P1 dp, ~ )P% P1p P1 pdpl p7 PR
dR
+GR, + (A+G)=L=0; (14a)
dp,
(A+G) drR, (2+3G) &Ry  GdR, G (A+2G) ,
L4 R, + G —2 — SRy +———5— PR,
o Ddp, i P dpt = pydpy i il P
+ GRy + A+ G)pRo =0; (14b)
1
drR, (2+G) (A+G) d’Ry G dRy G 5
+G R, + Ry + (A+2G)Rg+ G—— +— —+—p*Ry = 0; l4c
* )d1 P1 ! P1 PR+ ( o dpi  pidpy P} ’ (14c)
where
p, =ia(p/a). (15)

4. Asymptotic stress field corresponding to far-field torsional shear (mode III) loading

This case has not been investigated by earlier researchers, e.g., Sneddon (1946). Although Fig. 1 shows
the far-field loadings in Cartesian coordinates, the geometry of the penny shaped discontinuity necessitates
employment of the cylindrical polar coordinate system, to describe far-field loads responsible for the
growth of a penny shaped crack under modes I, II and I1I loading conditions, schematically shown in Fig.
3. The far-field loading, that corresponds to torsional or antiplane (with respect to the p—¢ plane) shear
(mode III) load, is the torsional shear stress t{2, which is applied on the top face of a cylinder of radius d,
d — oo, weakened/reinforced by a penny shaped discontinuity of radius, a, while the bottom face of the
cylinder is clamped (Fig. 3). Transformation to the local coordinates p, ¢, 6, followed by the use of Hooke’s
law and kinematic relations, given by Eq. (5), will clearly demonstrate that the most dominant stress
singularity under mode III far-field loading will arise out of the displacement component, U,. The solution
to the system of coupled ODE’s (14) can now be assumed in the form of the Frobenius type series solutions
(Chaudhuri and Xie, 2000), such that the displacement component, Uy, has the lowest exponent of p, for s
and n positive, thus yielding the dominant torsional shear stress singularity (p < a):
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Fig. 3. Far-field loadings ¢2° (mode I), t°° (mode II) and 7j? (mode III) in cylindrical polar coordinates.
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Rp = as+2n,051 g s Rq‘) = bs+2np51 " 5 R9 = Cs+2np51 " (16)
n=0 n=0 n=0

Substitution of Eq. (16) into Eq. (14) yields a recurrent relationship, which, for n = 0, supplies the following
characteristic equation for the coupled differential equations:

s>+ p*> =0 leading to p;, = =is. (17)

This permits the ¢-dependent term to be written in the form:

®y(¢) = (A, sin(sp) + A3 cos(sp)), (18a)
®,(¢) = (4 sin(s¢) + 4, cos(sh)), (18b)
By () = (4, cos(sp) — Ay sin(se)). (18c¢)

In addition, since a f-dependent term is, as mentioned earlier, assumed in the form of a Fourier series, the
assumed displacement functions can be written as follows:

Up = 1, (D; cos(a0) + Daisin(a0)) (Z sin(s¢) + 4> cos(s¢)), (19a)

U, = —by.1 (Dyisin(a0) + D, cos(a0)) (Al sin(s¢) + 4> cos(sqS)), (19b)

Uy = Lyy41 (Dyisin(ad) + D, cos(a)) <Z cos(s¢p) — 4, sin(S(j))), (19¢)
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where
(o] (o] o0
_ s+2n, _ s+2n+1, _ s+2n+1
Iy = E CopompPy 3 D1 = E A0 ) N S E byi20p] . (20)
n=0 n=0 n=0

The general recurrent relationship for the coefficients, ay, by, c,, is given by

Agion[— (A +2G) (s + 2n 4 2)(s + 2n) + Gs?] + by 25|~ (A + G)(s + 2n + 1) + (A + 3G)]
— Uy 2G + Coion(A+ G)(s +2n) =0, (21a)

— Ay 2u8[(A+ G)(s +2n+ 1) 4+ (24 3G)] 4 by, 2,[G(s + 21+ 2) (s + 2n) — (4 + 2G)s?]

+ Gbﬁ_zn_z + C‘S_*_z,,S(/?~ + G) = 07 (21b)

—agpam2(+ G)(s 4 20) = bypan 2(A + G)s + Cyon2(4 4 2G) + co12,G((s + 2n)° — 5*) = 0. (21c)
When n = 0, both Egs. (21a) and (21b) reduce to

a,[(2A+ G)s +2(2+2G)] + b[(2+ G)(s + 1) — 2 = 3G] = (4 + G)cy. (22)

The general asymptotic form for the transverse displacement component, Uy, can be written as follows
(p < a):

“By(0 .

Uy =" é( ) (4, sin(s¢) + 4, cos(sp)) + O(p*?); (23a)

U, =0(p""), Uy =0(p""); (23b)
where

By(0) = > (Di,cos(ad) + Dy sin(a0)), (24)

0=0,1,2,...,

and

AI,Z = Gcsjl,z; D1 = (ia)sﬁl, D2 = i(iO()sli)z; (25)
wherein « is arbitrary. The asymptotic stress field can be obtained from Eq. (23) as follows (p < a):

t40 = p* ' By(0)s(4; cos(s¢) — 4y sin(s¢)) + O(p*™), (26a)

1,0 = p* ' By(0)s(A4; sin(s¢) + A, cos(sp)) + O(p*), (26b)

4 =0(p"). 0, =0(p). o,=0(p"), 0 =0(p). (26¢)

It may be noted that since s is positive, all the higher order terms in Eq. (26) vanish as p — 0. This is
consistent with the asymptotic expansion for the two-dimensional crack problem due to Williams (1957).

The asymptotic stress field, given above by Eqgs. (23) and (26) can easily be transformed into the cor-
responding cylindrical polar coordinate system (r, 6, z) by using the transformation relations:

T9| | cos¢p sing | [ 1 |,
{Tez}{—sin¢) cosq&]{rdj,}’ (27a)

6.=0(p"), 6, =0(), t.=0(), o =0(p. (27b)
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4.1. Penny shaped discontinuity-surface boundary conditions

The expressions for stresses and displacements also need to satisfy the boundary conditions prescribed
on the top and bottom surfaces of the penny shaped crack or anticrack. The five combinations, as given by
Egs. (8)-(12), are considered below:

(1) Penny shaped crack:

Substitution of Eq. (26a) into Eq. (8) supplies the following characteristic equation:

sin(2sw) = 0. (28)

The above yields the minimum root (eigenvalue), contributing to the singular stresses, s = 1/2.

It must be stressed that strength of the stress singularity remains unchanged throughout the plate
thickness. The stress distribution in the vicinity of a penny-shaped crack front, i.e., p < a, can be expressed
as follows:

(0. .0) =L sin(g/2): (299)
(. .0) = L cos(4/2): (29b)

while the tangential displacement component is given by

il 5,0 =220 2 i (9). (30)

where
K (0) = Kis(0) + Kuia(0); (31)
with
K (0) = \/%Ales(e); (32a)
Kn(0) = \/gAlea(H). (32b)

Thus, the stress intensity factor for mode III can be separated into symmetric (Kjj;s) and anti-symmetric
(Kiira) parts.

(i1) Penny shaped anticrack or perfectly bonded thin rigid inclusion:

Substitution of Eq. (23a) into Eq. (9) supplies the following characteristic equation:

sin(2sm) = 0. (33)
The above yields the minimum root (eigenvalue), contributing to the singular stresses, s = 1/2.

The stress distribution in the vicinity of a semi-infinite anticrack front, i.e., p < a, can be expressed as
follows:

=

(i)
m (0

~

Tﬂg(pv (]-’)7 6) = \/QT,D COS((].’)/Q,), (343)
(1)
toolp: $,0) = — 1) G140y, (34b)

j

27p
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while the tangential displacement component is given by

C2K(0) [p ¢
Uﬁ(pa ¢79) - T %COS 5 ’ (35)
where
K11 (0) = Kigl(0) + Kif1, (0), (36)
with
KD (0) = [ 24,B,,(0 37
IIIs( ) 3 2By (0), (37a)
KD (0) = [ 24,B,,(0 37b
1112 (0) 42 5a(0).- (37b)

Thus, the stress intensity factor for mode III can be separated into symmetric (KI(I’L) and anti-symmetric
(Kfit,) parts.

(iii) Penny shaped thin transversely rigid inclusion (frictionless planar slip permitted):

Substitution of Eq. (23a) into Eq. (10) supplies the same characteristic equation as in the case of an
anticrack (see (ii) above). The mode III stress intensity factors are also identical, and will not be repeated
here.

(iv) Penny shaped thin rigid inclusion in part perfectly bonded, the remainder with frictionless slip
(Fig. 2):

Substitution of Eq. (26a) into Eq. (11b) supplies the same characteristic equation as in the case of a
penny shaped crack discussed in (i) above. It may be noted here that the interface continuity condition,
given by Eq. (11a) is automatically satisfied. The mode III stress intensity factors are also identical to their
counterparts for a penny shaped crack, and will not be repeated here.

(v) Penny shaped thin rigid inclusion alongside penny shaped crack:

Substitution of Egs. (23a) and (26a) into Egs. (12a) and (12b), respectively, yields the following char-
acteristic equation:

cos(2sm) = 0. (38)
The minimum roots (eigenvalue) contributing to the singular stresses are:
1 3
Sl_Z; 5221. (39)
The singular parts of 7,9 and 74 are given by
Tpo, Tpo ™~ O(p73/4) + O(p71/4). (40)

5. Asymptotic stress fields corresponding to far-field extension-bending (mode I)/sliding shear—twisting
(mode II) loadings

The case of sliding shear/twisting (mode II) has not been investigated by earlier researchers, e.g.,
Sneddon (1946), who have discussed the case of extension/bending (mode I) only. As before, although Fig.
1 shows the far-field loadings in Cartesian coordinates, the geometry of the penny shaped discontinuity
necessitates employment of the cylindrical polar coordinate system, to describe far-field loads responsible
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for the growth of a penny shaped crack under modes I, II and III loading conditions, schematically shown
in Fig. 3. The far-field loadings, that correspond to extension/bending (mode I) and inplane (with respect to
the p — ¢ plane) sliding shear/twisting (mode II) loads, are given by the normal stress, 62°, and shear stress,
72, respectively, applied on the top face of a cylinder of radius d, d — oo, weakened/reinforced by a penny
shaped discontinuity of radius, a, while the bottom face of the cylinder is clamped (Fig. 3). Transformation
to the local coordinates p, ¢, 0, followed by the use of Hooke’s law and kinematic relations, given by Eq.
(5), will clearly demonstrate that the most dominant stress singularity under mode I and II far-field loading
will arise out of the displacement components, U, and Uy. The solution to the system of coupled ODE’s
(14) can now be assumed in the form of the Frobenius type series solutions (Chaudhuri and Xie, 2000), such
that the displacement components, U, and U,, have the lowest exponent of p, for s and n positive, thus
yielding the dominant opening normal stress, o,, and sliding shear stress, 7,., singularities (p < a):

RI)(pl) = Z aAv+npbi+2’1; R¢(p1) = st+npi+2n; RU(pl) = chﬂzpéﬁzwrl' (41)
n=0 n=0 n=0

On substitution of Eq. (41) into Eq. (14), a set of recurrent relationships can be derived. When n = 0, the
characteristic equations for the coupled differential equations are given by

a[(2+2G)(s* = 1) + Gp*] + byp[(4 + G)s — (4 + 3G)] = 0, (42a)

apls(A+ G) + (24 3G)] + by[G(s* — 1) + (2 +2G)p*] = 0. (42b)
The above equations are found to have four imaginary roots:

pia=Fi(s+ 1), p3a=+i(s—1). (43)

The final results that satisfy the equilibrium equations (7) can be expressed in the following form:

Uﬂ = Upl + Upz; U¢ = U¢1 + U(/,z; U() = U()] + U()z; (44)
where

U, = I,(Dy,isin(af) + Dy, cos(aB)) (A, sin(s + 1) + 45 cos(s + 1)¢); (45a)

Uy = 1,(Dy,isin(a8) + Dy, cos(aB))(4; cos(s + 1) — A, sin(s + 1)¢h); (45b)

Upy = Ly+1(Dy, cos(a) + Doy sin(ad)) (A, sin(s + 1) + 4> cos(s + 1)) (45¢)
and

U,y = 11 (Dy,isin(a0) + Dy, cos(a0))(As sin(s — 1) + Ay cos(s — 1)¢)):; (46a)

Uy = Ly (Dr,isin(a0) + Da, cos(a0)) (A3 cos(s — 1) — Ay sin(s — 1)¢); (46b)

U = I3(Dy, cos(a6) + Dy, sin(a0)) (A sin(s — 1)¢p + A4 cos(s — 1)¢); (46¢)

in which /; and I, are modified Bessel’s functions of the first kind, while I, I, I3 are in the form as given
below:

o0 o0 o0
_ s+2n, _ s+2n, _ s+2n+1
Isl - E As+2nP ) 152 - § bs+2np1 ’ [s3 - E Cs+2nP . (47)
n=0 n=0 n=0
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The general recurrent relationship for the coefficients, a,,2,, bsi2,, Csi2n, 1S given by

Agim|(A42G) (s +2n 4+ 1) (s + 21— 1) — G(s — 1)’] = byyau(s — D[(A + G)(s + 2n) — (1 + 3G)]
+ ax+2n_2G + Cy1om—2 ()u + G) (S +2n — 1) = 0, (488_)

ayion(s — D[4+ G)(s +2n) + (4 3G)] + byuna[Gls + 20+ 1)(s + 20 — 1) — (4 + 2G) (s — 1)*]
—+ bSJrz,,,zG + Cs1on—2 ()u + G) (S — 1) = 0, (48b)

oA+ G)(s4+2n4+ 1) — b0, (A4 G)(s — 1) + ¢oi202(A + 2G) + ¢512,G(s + 2n + 1) (s — 1) ]=0.

(48¢)
The asymptotic forms of Eqs. (44)—(46) are given as follows (p < a):
U, =p) [F(S—_EI)(A’I(H) sin(s + 1) + 45(0) cos(s + 1)) + a,(45,(0) sin(s — 1)¢
+ A,(0) cos(s — 1)¢>)] +0(p*); (49a)
s =P [%(A’I(H) cos(s + 1)¢p — A5(0) sin(s + 1)) + fra,(45(0) cos(s — 1)¢
— A, (0)sin(s = 19)| + O (490)
Uy = O(p*™); (49¢)

where

_ (A4 G)s+ (2+3G)
/=5 Gy—-(+30) G0)

and
in which
(D1 sin(a0) + Ds, cos(ad)), (52a)
0=0,1,2
with
Dlm = iﬁlm DZoc = 6200 (52b)

The displacement and stress fields in the vicinity of the tip of a penny shaped crack or anticrack can be
written down in the form (p < a):

U, = 2—Ggs [(4:(0)sin(s + 1) + 42(0) cos(s + 1)p) + (s — 3 + 4v)(43(0) sin(s — 1)¢
+44(0) cos(s — 1)¢)] + O(p"**); (53a)
Uy = P [(41(0)cos(s+ 1) — 42(0) sin(s + 1)) + (s + 3 — 4v)(43(0) cos(s — 1)¢p

2Gs
— 44(0) sin(s — 1)¢)] + O(p"*?); (53b)
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Uy = O(p""") (53¢)
and
o, = p ' [(41(0) sin(s + 1) + 45(0) cos(s + 1)) + (s — 3)(43(0) sin(s — 1)¢
+ A44(0) cos(s — 1)¢)] + O(p**); (54a)
o5 =—p" (41(0) sin(s + 1) + 42(0) cos(s + 1)P) + (s + 1)(43(0) sin(s — 1)¢
T 44(0) cos(s — 1)¢)] + O(F*); (54b)
T,5 = p* ' [(41(0) cos(s + 1) — Ay(0) sin(s + 1)) + (s — 1)(43(0) cos(s — 1)¢
— A4(0) sin(s — 1)¢)] + O(p""); (54c)
o9 = —4vp 1 (43(0) sin(s — 1) + 44(0) cos(s — 1)¢) + O(p*™); (54d)
10 =O0(p"), 90 = O(p"); (54e)
where
AR Gs , )
412(0) = (1;) mflm(ma (55a)
.o\ 25G(A+ G)a ,
As4(0) = (i2) Gt Gy = (430 0 (55b)

It may be noted that since s or Res (when s is complex) is positive, all the higher order terms in Eq. (54),
vanish as p — 0. This is consistent with the asymptotic expansion for the two-dimensional crack problem
due to Williams (1957). It may further be noted that the present governing partial differential equations (7)
and the resulting solutions are approximated to be valid only in the immediate vicinity of the penny shaped
discontinuity (p < 1).

The asymptotic displacement and stress fields, given above by Eqgs. (53) and (54) can easily be trans-
formed into the corresponding cylindrical polar coordinate system (7, 6,z) by using the following trans-
formation (refer to Fig. 1):

psing =z; pcos¢p =r—a; (56)
U | cos¢p sing U, .

{UZ} [—sinq& cosqﬁ}{U(b}’ (57)
o, cos¢p  sin"p  —sin2¢ | [ o,
o. p=| sin’¢ cos? ¢ sin 2¢ oy p- (58)
T 1sin2¢ —1sin2¢ cos2¢ Tpo

The remaining displacement and stress components are

oo = —4vp* ! (43(0) sin(s — 1)¢ + A4(0) cos(s — 1)p) + O(p**);

Up=0p""); o =0(p"); 14 =0(p"). (59)

These asymptotic displacement and stress fields can further be transformed into the corresponding Car-
tesian coordinate system (x, y,z) as follows:
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Ul _|cosO —sin0| [ U |.

{Uy}_[sinO cosO]{Ug}’ (60)
Oy cos? 0 sinf  —sin26 o,
o, p = | sin’0 cos? 0 sin 20 Gy y; (61a)
Ty 1sin20 —1sin20 cos26 T,6

T | _ |cosO —sin0| [ 1.
{ryz} {sin@ cos 6 ]{rgz}' (61b)
The displacement component, U,, and stress component, o, are as given in Egs. (57) and (58), respectively.

5.1. Penny shaped discontinuity-surface boundary conditions

The expressions for stresses and displacements derived above also need to satisfy the boundary condi-
tions on the penny shaped crack or anticrack surfaces. The eigenvalues, which are related to the strength of
the stress singularity (if any), can be obtained from these relations. On substitution of Egs. (53) and (54)
into the boundary conditions on the penny shaped crack or anticrack surfaces given by Eqgs. (8)-(12) the
eigenvalues for different boundary conditions can be obtained as follows:

(i) Penny shaped crack:

On substitution of Egs. (54b,¢) into the boundary conditions on the top and bottom surfaces of a penny
shaped crack, given by Eq. (8), the computed minimum eigenvalue is given as s = 1/2. The stress distri-
bution in the vicinity of the circular tip of a penny shaped crack, i.e., p < a, can, therefore, be expressed as
follows:

a,(p, ¢, 0) = %(—%cos (%) +§cos (%)) 1\(/1% (%sin (%) —2 sin (%)), (62a)

+

a,(p,9,0) = Klz(f; <% cos <%) +%cos <§)) —KI;(:Z (2 sin (%) +2 sin <§>>, (62b)
To(p, 0, 0) = 512(% (411 sin <32¢> +% sin (?)) +I\</I% <2 cos <32¢> +%cos <(§>), (62c¢)
ao(p, ¢,0) = 25;5_? cos (%) — Z‘f;{(g) sin (%) (62d)
and
U,(p,,0) = —Klg)) 2%(% cos (%) + _5:8‘) cos (?))
+K“G(9) %(%sin (%) +_5:8V sin (%)) (63a)

)); (63b)
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where
Ki(0) = —2v214,B, (0), (64a)
Ky (0) = —2v2m43B, (0). (64b)

The stress field in the vicinity of the circular tip of a penny shaped crack inside a body under in-plane
extension can be recovered if

Bl(g) = BIS(G) = iDZk COS(kH). (65)
k=0

Hence, K| = K} and Kj; = K represent symmetric stress intensity factors. If the odd functions are selected
from B,(0), it can yield the out-of-plane bending case given by

Here K; = K}, and Kj; = Kj, are anti-symmetric stress intensity factors.
(i1) Penny shaped anticrack or perfectly bonded thin rigid inclusion:
Substitution of Egs. (53a,b) into Eq. (9) yields the following characteristic equation:

sin(2sm) = 0, (67)
which yields the minimum root (eigenvalue), contributing to the singular stresses, s = 1/2. The singular

stress distribution in the vicinity of the circular tip of a penny shaped crack, i.e., p < a, can, therefore, be
expressed as follows:

a,(p,¢,0) :If}(ZEI_Qp) ((7 _48‘)) cos <32¢> +§cos (?))
_’%((5;8” sin (%)—f—%sin (%)) (68a)
)

o¢<p,¢,e>Klm(")((7;8”> cos () 4305 (2))

V2mp

(2 (2) ()
)
2

r/,qb(p,qﬁ,ﬁ)[\{/‘zgr_gp) (—(5_48‘)) cos <%) +%cos< )

(0510 () ()

(i) (1)
ae(p, d,0) = hK;—\/Ti)O) cos <§> _ 2Ky (0) sin <£> (68d)
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and
050 (8 () 550 (4)
_KI(E)G(Q)\/%((548V) Sm<%>+ (5—8v) <§>) (69a)
0.0 = =G0 [ (T (S0) + 5 (4)
_Kf{é(@)\/z((S—“SV) cos<32¢> +(7_4 ") cos (?)) (69b)
where
K(0)=K2(0) +K2(0), j=1IL (70)
In the above equations,
K"(0) = —2v2n44B, (0); (71a)
K\ (0) = —2V2143B,(0). (71b)

Thus, the stress intensity factors for mode j = I, II can be separated into symmetric ( ]5 , 7 =L, II) and anti-
symmetric (K| ]1 , j =1L, 1) parts in accordance with B;(0) in Eq. (52) assuming B;5(0) and B1,(0), given by
Egs. (65) and (66), respectively.

(iii) Penny shaped thin transversely rigid inclusion (frictionless planar slip permitted):

Substitution of Egs. (53b) and (54c¢) into Eq. (10) yields the characteristic equation

cos(2sm) = 0. (72)
The lowest two roots (eigenvalues) are s = 1/4 and s = 3/4.

(iv) Penny shaped thin rigid inclusion in part perfectly bonded, the remainder with slip (Fig. 2):
The first two conditions of Eq. (11b) yield the boundary condition

10U,

——t=0, atf0=+n. 73

> (73)
Substitution of Egs. (53a,b) into Egs. (11) and (73) yields the characteristic equation

cos(sm) =0, (74)

which gives the minimum root s = 1/2 for the mode II. The mode 11 stress intensity factor K can easily be
derived. The singular stress distribution in the vicinity of the front separating the perfectly bonded region to
its planar slipping counterpart, can, therefore, be expressed as follows (p < a):

ap(p,¢,9):’j§ftfg <(7_44") sin (%) —gsin (%)) (75a)
o(p(p,(ﬁ,e)ljii_ep) <(7_44V) sin(32¢)+4 sin <(§>>, (75b)

To0(0, 0, 0) = 13%0) ((7 44v) cos (3;5) +Z cos (%)), (75¢)
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ao(p, ¢,0) = —% sin (%), (75d)
and
U,(p,¢,0) = KI(IZ)G(G) \/%( @ _44‘)) sin <%) _6 _48\)) sin (% ), (76a)

Us(p, 6.0) _KI(II;E@) \/g(w —44v) cos (%) _@COS <%>) (76b)

where K\ (0) is defined as in the Case (ii) above.

(v) Penny shaped thin rigid inclusion alongside penny shaped crack:

Substitution of Egs. (53a,b) and (54b,c) into Egs. (12a) and (12b), respectively, yields the following
characteristic equation:

—(8v* —12v +5)

4s) = 77
cos(dsm) = — - (77)
which has two pairs of complex roots (eigenvalues) contributing to singular stresses
s =s, +1s;, (78)
1 1 L [(C+1
(a) s, = 7 5= j:E cosh ( 5 )7 (79a)
3 1 L (C*+1
(b) s, = 7 5= j:E cosh ( Te >7 (79b)
where
C=23—4. (80)

It may be noted that Eq. (77) is identical to the plane strain version of Eq. (17) for clamped-free case of
Williams (1952), obtained by setting o = 27, and replacing ¢ = v/(1 4+ v) by v.

6. Summary and conclusions

An eigenfunction expansion method is presented to obtain three-dimensional asymptotic stress fields in
the vicinity of the front of a penny shaped discontinuity, e.g., crack, anticrack (infinitely rigid lamella), etc.,
subjected to the far-field torsion (mode III), extension/bending (mode I) and sliding shear/twisting (mode
IT) loadings. A local orthogonal curvilinear coordinate system (p, ¢, 0), is selected to describe the local
deformation behavior in the vicinity of the circular tip of the afore-mentioned penny shaped discontinuity.
One of the components of the Euclidean metric tensor, namely g33, is approximated in the derivation of the
kinematic relations and the resulting governing system of three partial differential equations. This as-
sumption is consistent with the objective of investigation of the boundary layer effect caused by the presence
of a penny shaped crack or anticrack in line with the Griffith-Irwin theory. Because of this approximation,
the computed results are valid only in the immediate neighborhood of the circular tip of the penny shaped
discontinuity.

Five different discontinuity-surface boundary conditions are considered: (i) penny shaped crack, (ii)
penny shaped anticrack or perfectly bonded thin rigid inclusion, (iii) penny shaped thin transversely rigid
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inclusion (frictionless planar slip permitted), (iv) penny shaped thin rigid inclusion in part perfectly bonded,
the remainder with frictionless slip, and (v) penny shaped thin rigid inclusion alongside penny shaped crack.
The computed stress singularity at the tip of a penny shaped crack is identical to its counterpart due to Sack
(1946) and Sneddon (1946), who, as mentioned earlier, investigated it under far-field mode I loading
condition. This lends confidence to the validity of the procedure employed here.

The circular tip of a penny shaped anticrack (perfectly bonded thin infinitely rigid inclusion) behaves like
its crack counterpart as far as the stress singularity is concerned. This explains the initiation of failure from
thin rigid inclusions both in the form of highly stiff ceramic platelet reinforcements and embrittlements,
such as hydrogen diffused inside a metal lattice or grain boundary. The main difference is, however, that all
the stress components at circular tip of an anticrack depend on Poisson’s ratio under modes I and II.

In regards to the computed eigenvalues (related to the strength of the stress singularity) and eigen-
function coefficients (related to the stress intensity factors whenever applicable), a penny shaped anticrack
(Case (i1)) behaves similar to a corresponding crack in modes I, I1, III, and the standard fracture mechanics
procedures are applicable here. This is also in agreement with experimentally observed crack initiation
and propagation from the regions of platelet reinforcement and HE. In the case of a penny shaped thin
transversely rigid inclusion (Case (iii)), the stress singularity in mode I loading is more severe, while mode
III behavior is similar to the second case. As regards the case of a penny shaped thin rigid inclusion in part
bonded to the matrix, the remainder with frictionless slip (Case (iv)), the mode I crack initiation and
propagation from the junction between the bonded and slipping parts of the circular thin rigid inclusion is
unlikely, while mode II and mode III cracks are expected to be initiated at this site. In the case of a penny
shaped thin rigid inclusion located alongside a crack (Case (v)), the mode I, II eigenvalues are complex, the
real parts of which are identical to the corresponding eigenvalues for the Case (iii) discussed above.
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