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Abstract

An eigenfunction expansion method is presented to obtain three-dimensional asymptotic stress fields in the vicinity

of the front of a penny shaped discontinuity, e.g., crack, anticrack (infinitely rigid lamella), etc., subjected to the far-field

torsion (mode III), extension/bending (mode I) and sliding shear/twisting (mode II) loadings. Five different disconti-

nuity-surface boundary conditions are considered: (i) penny shaped crack, (ii) penny shaped anticrack or perfectly

bonded thin rigid inclusion, (iii) penny shaped thin transversely rigid inclusion (frictionless planar slip permitted), (iv)

penny shaped thin rigid inclusion in part perfectly bonded, the remainder with frictionless slip, and (v) penny shaped

thin rigid inclusion alongside penny shaped crack. The computed stress singularity for a penny shaped anticrack is the

same as that of the corresponding crack. The main difference is, however, that all the stress components at the circular

tip of an anticrack depend on Poisson�s ratio under modes I and II.
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1. Introduction

The problem of a thick plate weakened by an embedded penny shaped crack (Fig. 1) has a long history

dating back to solutions due to Sack (1946) and Sneddon (1946). Sack (1946) was the first to extend

Griffith�s (two-dimensional) theory of rupture to a three-dimensional one by considering a penny shaped
(circular) crack of radius a, subjected to a stress field acting normal to the plane of the crack. By treating the

crack as an oblate spheroid and using Neuber�s solution of the equations of equilibrium in oblate sphe-

roidal coordinate system, Sack (1946) was able to derive the critical value of the tensile stress, rc, given by

rc ¼
pEcs

2ð1� m2Þa

� �1
2

;
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where E and m are Young�s modulus and Poisson�s ratio, respectively, and cs is the surface energy of the
material. Sneddon (1946) solved the same problem using a cylindrical polar coordinate system, r, h, z, where
r ¼ 0 represents the crack tip or front, and z ¼ 0 denotes the plane of the crack. Sneddon�s solution is based

on the method of Hankel transform that reduces the problem to a pair of dual integral equations.

A penny shaped rigid inclusion is essentially a penny shaped crack filled with an infinitely rigid lamella

(in this case, an embedded thin circular platelet or single crystal layer, or atomic hydrogen layer diffused

into metallic lattice or grain boundary), which unlike a crack transmits tractions, but prevents a dis-

placement discontinuity, and has been christened ‘‘anticrack’’ by Dundurs and Markenscoff (1989). Penny

shaped rigid inclusions have important applications in the field of materials science, because they are
idealized representations of various kinds of high modulus reinforcements (e.g., SiC, A12O3, etc. in the

form of platelets, etc.), embrittlements (e.g., hydrogen embrittlement (HE)), and are as much a source of

materials failure as cracks. Metallic materials have been known to fail at a level much lower than the (plane

strain) fracture toughness parameter, KIC, due to cooperative interaction of the applied stress field, and

environmentally assisted cracking (EAC) processes, such as HE, stress corrosion cracking (SCC), etc.

Various models for HE are discussed in standard texts, e.g., Hertzberg (1996). It is presently believed by

materials scientists that molecular hydrogen is dissociated by a chemisorption process on iron, which allows

the liberated atomic hydrogen to diffuse internally into the metallic lattice and grain boundary thus forming
an embrittled layer. Atomic hydrogen can diffuse rapidly through a metal lattice, because its size is smaller

than the lattice parameter. More significantly, hydrogen transport rates in association with dislocation

motion can be several orders of magnitude higher than that due to lattice diffusion (Hertzberg, 1996).

Although the two-dimensional analysis pertaining to the asymptotic displacement and stress fields in the

vicinity of the tip of a rigid line (plane strain/stress) inclusion has received some attention during the last

four decades, e.g., Sih (1965), Atkinson (1973), Brussat and Westman (1974, 1975), Hasebe et al. (1984),

Dundurs and Markenscoff (1989), the corresponding three-dimensional analysis of a penny shaped anti-

crack (infinitely rigid circular lamella) remains, to the author�s knowledge, to be addressed in the literature.
One of the goals of the present study is to fill this analytical gap.

Admittedly, the Hankel transform combined with the dual integral equations approach due to Sneddon

(1946) followed by others is a valuable tool, which can also be employed to solve the penny shaped

Fig. 1. A penny shaped discontinuity, associated local coordinate system (q;/; h) and far-field loadings.
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anticrack problem. It is, however, not as simple and straightforward as the eigenfunction approach, pio-

neered by Williams (1952) in two-dimensional analysis of angular corners, and extended to three-dimen-

sional analysis of through cracks and bimaterial interface cracks by Chaudhuri and Xie (2000), and Xie and

Chaudhuri (1998), respectively. It is worthwhile to note here that although the Williams (1952) eigen-
function expansion method for solution to the plane stress problem of a plate with a corner dates back to

the time when the three-dimensional penny shaped crack problem was first addressed by Sack (1946) and

Sneddon (1946), no connection was explored by researchers between the two sets of studies, which is the

primary focus in what follows. Finally, although the eigenfunction method has been successfully imple-

mented to compute the orders of three-dimensional stress singularities at the tips of cracks in homogeneous

materials (Chaudhuri and Xie, 2000) and bimaterial interface cracks (Xie and Chaudhuri, 1998), it has not

been applied to the computation of three-dimensional asymptotic stress field at the circular tip of a penny

shaped discontinuity, such as a crack or anticrack, which is the primary objective of the present investi-
gation.

2. Problem formulation

Fig. 1 shows the schematic diagram of an isotropic elastic body weakened by the presence of a penny

shaped crack or thin rigid inclusion of radius, a, subjected to general far-field loading, and the attached

Cartesian and cylindrical polar coordinate systems, (x; y; z) and (r; h; z), respectively. The circular tip of the

crack or the thin rigid inclusion weakening the elastic body of infinite extent is located at r ¼ a, a being the

radius, while the mid-plane of the body is located at z ¼ 0, the same as the plane of the crack or rigid

inclusion.
The key step is the selection of an appropriate local coordinate system (see Fig. 1(a)). A local curvilinear

coordinate system (q;/; h) is convenient to describe the local deformation behavior of the afore-mentioned

elastic body in the vicinity of the tip of the penny shaped crack or thin rigid inclusion. The components of

the displacements in the radial and tangential directions are represented by Uq, U/, while the component in

the circumferential or h-direction is denoted by Uh.

The local coordinate system is, as mentioned above, comprised of q, which denotes the radial direction

from a point located on the circular tip of the crack or rigid inclusion, / which denotes the angular di-

rection measured counterclockwise from the plane of the penny shaped crack or thin rigid inclusion, and h,
which is positive counterclockwise (looking from top) along the boundary of the crack or rigid inclusion.

Then the covariant and contravariant components of the base and reciprocal base vectors, called the

Euclidean metric and associated metric tensors, are derived, which yield the components of the Christoffel

three-index symbol of the second kind (Fung, 1965; Green and Zerna, 1968; Korn and Korn, 1968). Fi-

nally, the strain–displacement relations and equations of equilibrium in terms of the physical components

of the displacement vector are derived below.

The line element in the local curvilinear coordinate system (q;/; h) is given by

ds2 ¼ dq2 þ q2d/2 þ ðaþ q cos/Þ2dh2 � dq2 þ q2d/2 þ a2dh2; ð1aÞ

since, it is assumed that

j�qq cos/j6 j�qqj � 1; �qq ¼ q
a
: ð1bÞ

This assumption is consistent with the objective of investigation of the boundary layer effect caused by the

presence of a penny shaped crack or anticrack in line with the Griffith–Irwin theory.

Since the local coordinate system (q;/; h) is orthogonal, the components of the Euclidean metric and
associated metric tensors, gij and gij, i, j ¼ 1, 2, 3, respectively, are given by
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g11 ¼ 1; g22 ¼ q2; g33 � a2 ð2aÞ

and

g11 ¼ 1; g22 ¼ 1

q2
; g33 � 1

a2
; ð2bÞ

for q � a.
The nonvanishing components of the Christoffel three-index symbol of the second kind, associated with

a scheme of measurement in a Riemann space, and defined by

Ci
ab ¼ 1

2
gir

ogab

oxa

�
þ ogar

oxb
� ogab

oxr

�
; i; a; b; r ¼ 1; 2; 3 ð3Þ

can be written as follows:

C1
22 ¼ �q; C2

12 ¼ C2
21 ¼

1

q
: ð4Þ

The kinematic relations concerning the physical components of the engineering strain in terms of the

physical components of the displacement vector can then be written as follows:

eq ¼ oUq

oq
; e/ ¼ 1

q
oU/

o/
þ Uq

q
; eh �

1

a
oUh

oh
; e/h �

1

a
oU/

oh
þ 1

q
oUh

o/
;

eqh �
oUh

oq
þ 1

a
oUq

oh
; eq/ ¼ 1

q
oUq

o/
þ oU/

oq
� U/

q
; for q � a: ð5Þ

Substitution of the kinematic relations, given by Eq. (5) and linear elastic isotropic constitutive relations
(Hooke�s law) into the equilibrium equations,

r‘i=‘ ¼ 0; i; ‘ ¼ 1; 2; 3; ð6Þ

in which the subscripts denote covariant components and / represents covariant differentiation, the equa-

tions of equilibrium (in the absence of body forces) in terms of the physical components of the displacement

vector Uqj, U/j, and Uhj, j ¼ 1; 2, can be derived as given below (q � a):

ðk þ 2GÞ o
2Uq

oq2
þ ðk þ 2GÞ

q
oUq

oq
� ðk þ 2GÞUq

q2
þ G

q2

o2Uq

o/2
þ ðk þ GÞ

q
o2U/

oqo/
� ðk þ 3GÞ

q2

oU/

o/

þ G
a2

o2Uq

oh2
þ ðk þ GÞ

a
o2Uh

oqoh
¼ 0; ð7aÞ

ðk þ GÞ
q

o2Uq

o/oq
þ ðk þ 3GÞ

q2

oUq

o/
þ G

o2U/

oq2
þ G

oU/

qoq
� G

U/

q2
þ ðk þ 2GÞ o2U/

q2o/2
þ G
a2

o2U/

oh2

þ ðk þ GÞ
aq

o2Uh

o/oh
¼ 0; ð7bÞ

ðk þ GÞ
a

o2Uq

oqoh
þ ðk þ GÞ

a
oUq

qoh
þ ðk þ GÞ

a
o2U/

qo/oh
þ ðk þ 2GÞ

a2
o2Uh

oh2
þ G

o2Uh

oq2
þ G

oUh

qoq
þ G

q2

o2Uh

o/2
¼ 0;

ð7cÞ

where k and G are Lame�s constants. The correct solution must satisfy the governing partial differential
equations and boundary conditions. The boundary conditions prescribed at the top and bottom surfaces of

the penny shaped crack or thin rigid inclusion can be written as follows:
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ii(i) Penny shaped crack:

/ ¼ 	p : r/ ¼ sq/ ¼ s/h ¼ 0: ð8Þ

i(ii) Penny shaped anticrack or perfectly bonded thin rigid inclusion:

/ ¼ 	p : U/ ¼ Uq ¼ Uh ¼ 0: ð9Þ

(iii) Penny shaped thin transversely rigid inclusion (frictionless planar slip permitted):

/ ¼ 	p : U/ ¼ sq/ ¼ Uh ¼ 0: ð10Þ

(iv) Penny shaped thin rigid inclusion in part perfectly bonded (a6 r6 b), the remainder with frictionless

slip (06 r6 a) as shown in Fig. 2:

(a) For r ¼ a:

/ ¼ 0 : U/ ¼ Uq ¼ Uh ¼ 0; ð11aÞ

/ ¼ 	p : U/ ¼ sq/ ¼ s/h ¼ 0: ð11bÞ

(b) For r ¼ b:
The boundary conditions and analytical procedure are the same those for the anticrack (Case (ii))

discussed above, except that a is replaced by b in the derivation, and hence will not be discussed
further.

i(v) Penny shaped thin rigid inclusion alongside penny shaped crack:

/ ¼ p : U/ ¼ Uq ¼ Uh ¼ 0; ð12aÞ

/ ¼ �p : r/ ¼ sq/ ¼ s/h ¼ 0: ð12bÞ

The solution sought must satisfy the governing equations (7) and one of the five combinations of

boundary conditions (8)–(12) listed above.

Fig. 2. Penny shaped thin rigid inclusion in part perfectly bonded, the remainder with slip.
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3. Solution strategy

The assumed displacement functions for the three-dimensional plate problem under consideration

are selected on the basis of separation of variables in a manner similar to their counterparts for the three-
dimensional crack problem investigated earlier by Chaudhuri and Xie (2000). These are as given below:

Uqðq;/; hÞ ¼ eiahUqð/ÞRqðqÞ ¼ eiahþp/RqðqÞ; ð13aÞ

U/ðq;/; hÞ ¼ eiahU/ð/ÞR/ðqÞ ¼ eiahþp/R/ðqÞ; ð13bÞ

Uhðq;/; hÞ ¼ eiahUhð/ÞRhðqÞ ¼ eiahþp/RhðqÞ; ð13cÞ
where a 2 Z, the set of integers. It may be noted that since the h-dependent term is nonsingular and pe-

riodic, it can be best represented by Fourier series. Substitution of Eq. (13) into Eq. (7) yields the following

system of coupled ordinary differential equations (ODE�s) valid for q � a:

ðk þ 2GÞd
2Rq

dq2
1

þ ðk þ 2GÞ
q1

dRq

dq1

� ðk þ 2GÞRq

q2
1

þ G
q2
1

p2Rq þ
ðk þ GÞ

q1

p
dR/

dq1

� ðk þ 3GÞ
q2
1

pR/

þ GRq þ ðk þ GÞ dRh

dq1

¼ 0; ð14aÞ

ðk þ GÞ
q1

p
dRq

dq1

þ ðk þ 3GÞ
q2
1

pRq þ G
d2R/

dq2
1

þ G
q1

dR/

dq1

� G
q2
1

R/ þ ðk þ 2GÞ
q2
1

p2R/

þ GR/ þ ðk þ GÞ
q1

pRh ¼ 0; ð14bÞ

ðk þ GÞ dRq

dq1

þ ðk þ GÞ
q1

Rq þ
ðk þ GÞ

q1

pR/ þ ðk þ 2GÞRh þ G
d2Rh

dq2
1

þ G
q1

dRh

dq1

þ G
q2
1

p2Rh ¼ 0; ð14cÞ

where

q1 ¼ iaðq=aÞ: ð15Þ

4. Asymptotic stress field corresponding to far-field torsional shear (mode III) loading

This case has not been investigated by earlier researchers, e.g., Sneddon (1946). Although Fig. 1 shows

the far-field loadings in Cartesian coordinates, the geometry of the penny shaped discontinuity necessitates

employment of the cylindrical polar coordinate system, to describe far-field loads responsible for the
growth of a penny shaped crack under modes I, II and III loading conditions, schematically shown in Fig.

3. The far-field loading, that corresponds to torsional or antiplane (with respect to the q–/ plane) shear

(mode III) load, is the torsional shear stress s1hz , which is applied on the top face of a cylinder of radius d,
d ! 1, weakened/reinforced by a penny shaped discontinuity of radius, a, while the bottom face of the

cylinder is clamped (Fig. 3). Transformation to the local coordinates q, /, h, followed by the use of Hooke�s
law and kinematic relations, given by Eq. (5), will clearly demonstrate that the most dominant stress

singularity under mode III far-field loading will arise out of the displacement component, Uh. The solution

to the system of coupled ODE�s (14) can now be assumed in the form of the Frobenius type series solutions
(Chaudhuri and Xie, 2000), such that the displacement component, Uh, has the lowest exponent of q, for s
and n positive, thus yielding the dominant torsional shear stress singularity (q � a):
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Rq ¼
X1
n¼0

asþ2nq
sþ2nþ1
1 ; R/ ¼

X1
n¼0

bsþ2nq
sþ2nþ1
1 ; Rh ¼

X1
n¼0

csþ2nq
sþ2n
1 : ð16Þ

Substitution of Eq. (16) into Eq. (14) yields a recurrent relationship, which, for n ¼ 0, supplies the following

characteristic equation for the coupled differential equations:

s2 þ p2 ¼ 0 leading to p1;2 ¼ 	is: ð17Þ
This permits the /-dependent term to be written in the form:

Uhð/Þ ¼ ðA1 sinðs/Þ þ A2 cosðs/ÞÞ; ð18aÞ

Uqð/Þ ¼ ðA1 sinðs/Þ þ A2 cosðs/ÞÞ; ð18bÞ

U/ð/Þ ¼ ðA1 cosðs/Þ � A2 sinðs/ÞÞ: ð18cÞ
In addition, since a h-dependent term is, as mentioned earlier, assumed in the form of a Fourier series, the

assumed displacement functions can be written as follows:

Uh ¼ I1s D1 cosðahÞ
�

þ D2i sinðahÞ
�

A1 sinðs/Þ
�

þ A2 cosðs/Þ
	
; ð19aÞ

Uq ¼ �I2sþ1 D1i sinðahÞ
�

þ D2 cosðahÞ
�

A1 sinðs/Þ
�

þ A2 cosðs/Þ
	
; ð19bÞ

U/ ¼ I3sþ1 D1i sinðahÞ
�

þ D2 cosðahÞ
�

A1 cosðs/Þ
�

� A2 sinðs/Þ
	
; ð19cÞ

Fig. 3. Far-field loadings r1
z (mode I), s1rz (mode II) and s1hz (mode III) in cylindrical polar coordinates.
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where

I1s ¼
X1
n¼0

csþ2nq
sþ2n
1 ; I2sþ1 ¼

X1
n¼0

asþ2nq
sþ2nþ1
1 ; I3sþ1 ¼

X1
n¼0

bsþ2nq
sþ2nþ1
1 : ð20Þ

The general recurrent relationship for the coefficients, as, bs, cs, is given by

asþ2n½�ðk þ 2GÞðsþ 2nþ 2Þðsþ 2nÞ þ Gs2� þ bsþ2ns½�ðk þ GÞðsþ 2nþ 1Þ þ ðk þ 3GÞ�
� asþ2n�2Gþ csþ2nðk þ GÞðsþ 2nÞ ¼ 0; ð21aÞ

� asþ2ns ðk½ þ GÞðsþ 2nþ 1Þ þ ðk þ 3GÞ� þ bsþ2n½Gðsþ 2nþ 2Þðsþ 2nÞ � ðk þ 2GÞs2�
þ Gbsþ2n�2 þ csþ2nsðk þ GÞ ¼ 0; ð21bÞ

�asþ2n�2ðk þ GÞðsþ 2nÞ � bsþ2n�2ðk þ GÞsþ csþ2n�2ðk þ 2GÞ þ csþ2nGððsþ 2nÞ2 � s2Þ ¼ 0: ð21cÞ

When n ¼ 0, both Eqs. (21a) and (21b) reduce to

as ðk½ þ GÞsþ 2ðk þ 2GÞ� þ bs ðk½ þ GÞðsþ 1Þ � k � 3G� ¼ ðk þ GÞcs: ð22Þ

The general asymptotic form for the transverse displacement component, Uh, can be written as follows

(q � a):

Uh ¼
qsBbðhÞ

G
ðA1 sinðs/Þ þ A2 cosðs/ÞÞ þOð�qqsþ2Þ; ð23aÞ

Uq ¼ Oð�qqsþ1Þ; U/ ¼ Oð�qqsþ1Þ; ð23bÞ

where

BbðhÞ ¼
X1

a¼0;1;2;...;

ðD1a cosðahÞ þ D2a sinðahÞÞ; ð24Þ

and

A1;2 ¼ GcsA1;2; D1 ¼ ðiaÞsD1; D2 ¼ iðiaÞsD2; ð25Þ
wherein a is arbitrary. The asymptotic stress field can be obtained from Eq. (23) as follows (q � a):

s/h ¼ qs�1BbðhÞsðA1 cosðs/Þ � A2 sinðs/ÞÞ þOð�qqsþ1Þ; ð26aÞ

sqh ¼ qs�1BbðhÞsðA1 sinðs/Þ þ A2 cosðs/ÞÞ þOð�qqsþ1Þ; ð26bÞ

sq/ ¼ Oð�qqsÞ; rq ¼ Oð�qqsÞ; r/ ¼ Oð�qqsÞ; rh ¼ Oð�qqsÞ: ð26cÞ
It may be noted that since s is positive, all the higher order terms in Eq. (26) vanish as q ! 0. This is

consistent with the asymptotic expansion for the two-dimensional crack problem due to Williams (1957).

The asymptotic stress field, given above by Eqs. (23) and (26) can easily be transformed into the cor-

responding cylindrical polar coordinate system (r; h; z) by using the transformation relations:

srh
shz


 �
¼ cos/ sin/

� sin/ cos/

� �
sqh

s/h


 �
; ð27aÞ

rz ¼ Oð�qqsÞ; rr ¼ Oð�qqsÞ; srz ¼ Oð�qqsÞ; rh ¼ Oð�qqsÞ: ð27bÞ
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4.1. Penny shaped discontinuity-surface boundary conditions

The expressions for stresses and displacements also need to satisfy the boundary conditions prescribed

on the top and bottom surfaces of the penny shaped crack or anticrack. The five combinations, as given by
Eqs. (8)–(12), are considered below:

(i) Penny shaped crack:

Substitution of Eq. (26a) into Eq. (8) supplies the following characteristic equation:

sinð2spÞ ¼ 0: ð28Þ
The above yields the minimum root (eigenvalue), contributing to the singular stresses, s ¼ 1=2.

It must be stressed that strength of the stress singularity remains unchanged throughout the plate
thickness. The stress distribution in the vicinity of a penny-shaped crack front, i.e., q � a, can be expressed

as follows:

sqhðq;/; hÞ ¼
KIIIffiffiffiffiffiffiffiffi
2pq

p sinð/=2Þ; ð29aÞ

s/hðq;/; hÞ ¼
KIIIffiffiffiffiffiffiffiffi
2pq

p cosð/=2Þ; ð29bÞ

while the tangential displacement component is given by

Uhðq;/; hÞ ¼
2KIIIðhÞ

G

ffiffiffiffiffiffi
q
2p

r
sin

/
2

� �
; ð30Þ

where

KIIIðhÞ ¼ KIIIsðhÞ þ KIIIaðhÞ; ð31Þ
with

KIIIsðhÞ ¼
ffiffiffi
p
2

r
A1BbsðhÞ; ð32aÞ

KIIIaðhÞ ¼
ffiffiffi
p
2

r
A1BbaðhÞ: ð32bÞ

Thus, the stress intensity factor for mode III can be separated into symmetric (KIIIs) and anti-symmetric

(KIIIa) parts.

(ii) Penny shaped anticrack or perfectly bonded thin rigid inclusion:

Substitution of Eq. (23a) into Eq. (9) supplies the following characteristic equation:

sinð2spÞ ¼ 0: ð33Þ
The above yields the minimum root (eigenvalue), contributing to the singular stresses, s ¼ 1=2.

The stress distribution in the vicinity of a semi-infinite anticrack front, i.e., q � a, can be expressed as

follows:

sqhðq;/; hÞ ¼
KðiÞ

IIIðhÞffiffiffiffiffiffiffiffi
2pq

p cosð/=2Þ; ð34aÞ

s/hðq;/; hÞ ¼ �KðiÞ
IIIðhÞffiffiffiffiffiffiffiffi
2pq

p sinð/=2Þ; ð34bÞ
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while the tangential displacement component is given by

Uhðq;/; hÞ ¼
2KðiÞ

IIIðhÞ
G

ffiffiffiffiffiffi
q
2p

r
cos

/
2

� �
; ð35Þ

where

KðiÞ
IIIðhÞ ¼ KðiÞ

IIIsðhÞ þ KðiÞ
IIIaðhÞ; ð36Þ

with

KðiÞ
IIIsðhÞ ¼

ffiffiffi
p
2

r
A2BbsðhÞ; ð37aÞ

KðiÞ
IIIaðhÞ ¼

ffiffiffi
p
2

r
A2BbaðhÞ: ð37bÞ

Thus, the stress intensity factor for mode III can be separated into symmetric (KðiÞ
IIIs) and anti-symmetric

(KðiÞ
IIIa) parts.

(iii) Penny shaped thin transversely rigid inclusion (frictionless planar slip permitted):

Substitution of Eq. (23a) into Eq. (10) supplies the same characteristic equation as in the case of an

anticrack (see (ii) above). The mode III stress intensity factors are also identical, and will not be repeated

here.

(iv) Penny shaped thin rigid inclusion in part perfectly bonded, the remainder with frictionless slip

(Fig. 2):

Substitution of Eq. (26a) into Eq. (11b) supplies the same characteristic equation as in the case of a
penny shaped crack discussed in (i) above. It may be noted here that the interface continuity condition,

given by Eq. (11a) is automatically satisfied. The mode III stress intensity factors are also identical to their

counterparts for a penny shaped crack, and will not be repeated here.

(v) Penny shaped thin rigid inclusion alongside penny shaped crack:

Substitution of Eqs. (23a) and (26a) into Eqs. (12a) and (12b), respectively, yields the following char-

acteristic equation:

cosð2spÞ ¼ 0: ð38Þ
The minimum roots (eigenvalue) contributing to the singular stresses are:

s1 ¼
1

4
; s2 ¼

3

4
: ð39Þ

The singular parts of sqh and s/h are given by

sqh; s/h � Oðq�3=4Þ þOðq�1=4Þ: ð40Þ

5. Asymptotic stress fields corresponding to far-field extension–bending (mode I)/sliding shear–twisting

(mode II) loadings

The case of sliding shear/twisting (mode II) has not been investigated by earlier researchers, e.g.,

Sneddon (1946), who have discussed the case of extension/bending (mode I) only. As before, although Fig.

1 shows the far-field loadings in Cartesian coordinates, the geometry of the penny shaped discontinuity

necessitates employment of the cylindrical polar coordinate system, to describe far-field loads responsible

3796 R.A. Chaudhuri / International Journal of Solids and Structures 40 (2003) 3787–3805



for the growth of a penny shaped crack under modes I, II and III loading conditions, schematically shown

in Fig. 3. The far-field loadings, that correspond to extension/bending (mode I) and inplane (with respect to

the q � / plane) sliding shear/twisting (mode II) loads, are given by the normal stress, r1
z , and shear stress,

s1rz , respectively, applied on the top face of a cylinder of radius d, d ! 1, weakened/reinforced by a penny
shaped discontinuity of radius, a, while the bottom face of the cylinder is clamped (Fig. 3). Transformation

to the local coordinates q, /, h, followed by the use of Hooke�s law and kinematic relations, given by Eq.

(5), will clearly demonstrate that the most dominant stress singularity under mode I and II far-field loading

will arise out of the displacement components, Uq and U/. The solution to the system of coupled ODE�s
(14) can now be assumed in the form of the Frobenius type series solutions (Chaudhuri and Xie, 2000), such

that the displacement components, Uq and U/, have the lowest exponent of q, for s and n positive, thus

yielding the dominant opening normal stress, rz, and sliding shear stress, srz, singularities (q � a):

Rqðq1Þ ¼
X1
n¼0

asþnq
sþ2n
1 ; R/ðq1Þ ¼

X1
n¼0

bsþnq
sþ2n
1 ; Rhðq1Þ ¼

X1
n¼0

csþnq
sþ2nþ1
1 : ð41Þ

On substitution of Eq. (41) into Eq. (14), a set of recurrent relationships can be derived. When n ¼ 0, the

characteristic equations for the coupled differential equations are given by

as½ðk þ 2GÞðs2 � 1Þ þ Gp2� þ bsp½ðk þ GÞs� ðk þ 3GÞ� ¼ 0; ð42aÞ

asp½sðk þ GÞ þ ðk þ 3GÞ� þ bs½Gðs2 � 1Þ þ ðk þ 2GÞp2� ¼ 0: ð42bÞ

The above equations are found to have four imaginary roots:

p1;2 ¼ 	iðsþ 1Þ; p3;4 ¼ 	iðs� 1Þ: ð43Þ

The final results that satisfy the equilibrium equations (7) can be expressed in the following form:

Uq ¼ Uq1 þ Uq2; U/ ¼ U/1 þ U/2; Uh ¼ Uh1 þ Uh2; ð44Þ

where

Uq1 ¼ IsðD1ai sinðahÞ þ D2a cosðahÞÞðA1 sinðsþ 1Þ/ þ A2 cosðsþ 1Þ/Þ; ð45aÞ

U/1 ¼ IsðD1ai sinðahÞ þ D2a cosðahÞÞðA1 cosðsþ 1Þ/ � A2 sinðsþ 1Þ/Þ; ð45bÞ

Uh1 ¼ Isþ1ðD1a cosðahÞ þ D2ai sinðahÞÞðA1 sinðsþ 1Þ/ þ A2 cosðsþ 1Þ/Þ ð45cÞ

and

Uq2 ¼ Is1ðD1ai sinðahÞ þ D2a cosðahÞÞðA3 sinðs� 1Þ/ þ A4 cosðs� 1Þ/Þ; ð46aÞ

U/2 ¼ Is1ðD1ai sinðahÞ þ D2a cosðahÞÞðA3 cosðs� 1Þ/ � A4 sinðs� 1Þ/Þ; ð46bÞ

Uh2 ¼ Is3ðD1a cosðahÞ þ D2ai sinðahÞÞðA3 sinðs� 1Þ/ þ A4 cosðs� 1Þ/Þ; ð46cÞ
in which Is and Isþ1 are modified Bessel�s functions of the first kind, while Is1, Is2, Is3 are in the form as given

below:

Is1 ¼
X1
n¼0

asþ2nq
sþ2n
1 ; Is2 ¼

X1
n¼0

bsþ2nq
sþ2n
1 ; Is3 ¼

X1
n¼0

csþ2nq
sþ2nþ1
1 : ð47Þ
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The general recurrent relationship for the coefficients, asþ2n, bsþ2n, csþ2n, is given by

asþ2n½ðk þ 2GÞðsþ 2nþ 1Þðsþ 2n� 1Þ � Gðs� 1Þ2� � bsþ2nðs� 1Þ½ðk þ GÞðsþ 2nÞ � ðk þ 3GÞ�
þ asþ2n�2Gþ csþ2n�2ðk þ GÞðsþ 2n� 1Þ ¼ 0; ð48aÞ

asþ2nðs� 1Þ½ðk þ GÞðsþ 2nÞ þ ðk þ 3GÞ� þ bsþ2n½Gðsþ 2nþ 1Þðsþ 2n� 1Þ � ðk þ 2GÞðs� 1Þ2�
þ bsþ2n�2Gþ csþ2n�2ðk þ GÞðs� 1Þ ¼ 0; ð48bÞ

asþ2nðkþGÞðsþ 2nþ 1Þ � bsþ2nðkþGÞðs� 1Þ þ csþ2n�2ðkþ 2GÞ þ csþ2nG½ðsþ 2nþ 1Þ2 � ðs� 1Þ2� ¼ 0:

ð48cÞ
The asymptotic forms of Eqs. (44)–(46) are given as follows (q � a):

Uq ¼ qs
1

2�s

Cðsþ 1Þ ðA
0
1ðhÞ sinðs

�
þ 1Þ/ þ A0

2ðhÞ cosðsþ 1Þ/Þ þ asðA0
3jðhÞ sinðs� 1Þ/

þ A0
4ðhÞ cosðs� 1Þ/Þ

�
þOð�qqsþ2Þ; ð49aÞ

U/ ¼ qs
1

2�s

Cðsþ 1Þ ðA
0
1ðhÞ cosðs

�
þ 1Þ/ � A0

2ðhÞ sinðsþ 1Þ/Þ þ f1asðA0
3ðhÞ cosðs� 1Þ/

� A0
4ðhÞ sinðs� 1Þ/Þ

�
þOð�qqsþ2Þ; ð49bÞ

Uh ¼ Oð�qqsþ1Þ; ð49cÞ
where

f1 ¼
ðk þ GÞsþ ðk þ 3GÞ
ðk þ GÞs� ðk þ 3GÞ ð50Þ

and

A0
iðhÞ ¼ AiB1ðhÞ; i ¼ 1; 2; 3; 4; ð51Þ

in which

B1ðhÞ ¼
X1

a¼0;1;2

ðD1a sinðahÞ þ D2a cosðahÞÞ; ð52aÞ

with

D1a ¼ iD1a; D2a ¼ D2a: ð52bÞ
The displacement and stress fields in the vicinity of the tip of a penny shaped crack or anticrack can be

written down in the form (q � a):

Uq ¼ qs

2Gs
½ðA1ðhÞ sinðsþ 1Þ/ þ A2ðhÞ cosðsþ 1Þ/Þ þ ðs� 3þ 4mÞðA3ðhÞ sinðs� 1Þ/

þ A4ðhÞ cosðs� 1Þ/Þ� þOð�qqsþ2Þ; ð53aÞ

U/ ¼ qs

2Gs
½ðA1ðhÞ cosðsþ 1Þ/ � A2ðhÞ sinðsþ 1Þ/Þ þ ðsþ 3� 4mÞðA3ðhÞ cosðs� 1Þ/

� A4ðhÞ sinðs� 1Þ/Þ� þOð�qqsþ2Þ; ð53bÞ
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Uh ¼ Oð�qqsþ1Þ ð53cÞ

and

rq ¼ qs�1½ðA1ðhÞ sinðsþ 1Þ/ þ A2ðhÞ cosðsþ 1Þ/Þ þ ðs� 3ÞðA3ðhÞ sinðs� 1Þ/
þ A4ðhÞ cosðs� 1Þ/Þ� þOð�qqsþ1Þ; ð54aÞ

r/ ¼ �qs�1½ðA1ðhÞ sinðsþ 1Þ/ þ A2ðhÞ cosðsþ 1Þ/Þ þ ðsþ 1ÞðA3ðhÞ sinðs� 1Þ/
þ A4ðhÞ cosðs� 1Þ/Þ� þOð�qqsþ1Þ; ð54bÞ

sq/ ¼ qs�1½ðA1ðhÞ cosðsþ 1Þ/ � A2ðhÞ sinðsþ 1Þ/Þ þ ðs� 1ÞðA3ðhÞ cosðs� 1Þ/
� A4ðhÞ sinðs� 1Þ/Þ� þOð�qqsþ1Þ; ð54cÞ

rh ¼ �4mqs�1ðA3ðhÞ sinðs� 1Þ/ þ A4ðhÞ cosðs� 1Þ/Þ þOð�qqsþ1Þ; ð54dÞ

sqh ¼ Oð�qqsÞ; s/h ¼ Oð�qqsÞ; ð54eÞ

where

A1;2ðhÞ ¼ i
a
a

� 	s Gs
2s�1Cðsþ 1ÞA

0
1;2ðhÞ; ð55aÞ

A3;4ðhÞ ¼ i
a
a

� 	s 2sGðk þ GÞas
ðk þ GÞs� ðk þ 3GÞA

0
3;4ðhÞ: ð55bÞ

It may be noted that since s or Re s (when s is complex) is positive, all the higher order terms in Eq. (54),
vanish as q ! 0. This is consistent with the asymptotic expansion for the two-dimensional crack problem

due to Williams (1957). It may further be noted that the present governing partial differential equations (7)

and the resulting solutions are approximated to be valid only in the immediate vicinity of the penny shaped

discontinuity (�qq � 1).

The asymptotic displacement and stress fields, given above by Eqs. (53) and (54) can easily be trans-

formed into the corresponding cylindrical polar coordinate system (r; h; z) by using the following trans-

formation (refer to Fig. 1):

q sin/ ¼ z; q cos/ ¼ r � a; ð56Þ

Ur

Uz


 �
¼ cos/ sin/

� sin/ cos/

� �
Uq

U/


 �
; ð57Þ

rr

rz

srz

8<
:

9=
; ¼

cos2 / sin2 / � sin 2/
sin2 / cos2 / sin 2/

1
2
sin 2/ � 1

2
sin 2/ cos 2/

2
4

3
5 rq

r/

sq/

8<
:

9=
;: ð58Þ

The remaining displacement and stress components are

rh ¼ �4mqs�1ðA3ðhÞ sinðs� 1Þ/ þ A4ðhÞ cosðs� 1Þ/Þ þOð�qqsþ1Þ;

Uh ¼ Oð�qqsþ1Þ; srh ¼ Oð�qqsÞ; shz ¼ Oð�qqsÞ: ð59Þ

These asymptotic displacement and stress fields can further be transformed into the corresponding Car-

tesian coordinate system (x; y; z) as follows:
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Ux

Uy


 �
¼ cos h � sin h

sin h cos h

� �
Ur

Uh


 �
; ð60Þ

rx

ry

sxy

8<
:

9=
; ¼

cos2 h sin2 h � sin 2h
sin2 h cos2 h sin 2h

1
2
sin 2h � 1

2
sin 2h cos 2h

2
4

3
5 rr

rh

srh

8<
:

9=
;; ð61aÞ

sxz
syz


 �
¼ cos h � sin h

sin h cos h

� �
srz
shz


 �
: ð61bÞ

The displacement component, Uz, and stress component, rz, are as given in Eqs. (57) and (58), respectively.

5.1. Penny shaped discontinuity-surface boundary conditions

The expressions for stresses and displacements derived above also need to satisfy the boundary condi-

tions on the penny shaped crack or anticrack surfaces. The eigenvalues, which are related to the strength of

the stress singularity (if any), can be obtained from these relations. On substitution of Eqs. (53) and (54)

into the boundary conditions on the penny shaped crack or anticrack surfaces given by Eqs. (8)–(12) the

eigenvalues for different boundary conditions can be obtained as follows:

(i) Penny shaped crack:

On substitution of Eqs. (54b,c) into the boundary conditions on the top and bottom surfaces of a penny

shaped crack, given by Eq. (8), the computed minimum eigenvalue is given as s ¼ 1=2. The stress distri-
bution in the vicinity of the circular tip of a penny shaped crack, i.e., q � a, can, therefore, be expressed as

follows:

rqðq;/; hÞ ¼
KIðhÞffiffiffiffiffiffiffiffi
2pq

p
�
� 1

4
cos

3/
2

� �
þ 5

4
cos

/
2

� ��
þ KIIðhÞffiffiffiffiffiffiffiffi

2pq
p 3

4
sin

3/
2

� ��
� 5

4
sin

/
2

� ��
; ð62aÞ

r/ðq;/; hÞ ¼
KIðhÞffiffiffiffiffiffiffiffi
2pq

p 1

4
cos

3/
2

� ��
þ 3

4
cos

/
2

� ��
� KIIðhÞffiffiffiffiffiffiffiffi

2pq
p 3

4
sin

3/
2

� ��
þ 3

4
sin

/
2

� ��
; ð62bÞ

sq/ðq;/; hÞ ¼
KIðhÞffiffiffiffiffiffiffiffi
2pq

p 1

4
sin

3/
2

� ��
þ 1

4
sin

/
2

� ��
þ KIIðhÞffiffiffiffiffiffiffiffi

2pq
p 3

4
cos

3/
2

� ��
þ 1

4
cos

/
2

� ��
; ð62cÞ

rhðq;/; hÞ ¼
2mKIðhÞffiffiffiffiffiffiffiffi

2pq
p cos

/
2

� �
� 2mKIIðhÞffiffiffiffiffiffiffiffi

2pq
p sin

/
2

� �
ð62dÞ

and

Uqðq;/; hÞ ¼ �KIðhÞ
G

ffiffiffiffiffiffi
q
2p

r
1

4
cos

3/
2

� ��
þ�5þ 8m

4
cos

/
2

� ��

þ KIIðhÞ
G

ffiffiffiffiffiffi
q
2p

r
3

4
sin

3/
2

� ��
þ�5þ 8m

4
sin

/
2

� ��
; ð63aÞ

U/ðq;/; hÞ ¼
KIðhÞ
G

ffiffiffiffiffiffi
q
2p

r
1

4
sin

3/
2

� ��
þ�7þ 8m

4
sin

/
2

� ��

þ KIIðhÞ
G

ffiffiffiffiffiffi
q
2p

r
3

4
cos

3/
2

� ��
þ�7þ 8m

4
cos

/
2

� ��
; ð63bÞ
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where

KIðhÞ ¼ �2
ffiffiffiffiffiffi
2p

p
A4B1ðhÞ; ð64aÞ

KIIðhÞ ¼ �2
ffiffiffiffiffiffi
2p

p
A3B1ðhÞ: ð64bÞ

The stress field in the vicinity of the circular tip of a penny shaped crack inside a body under in-plane
extension can be recovered if

B1ðhÞ ¼ B1sðhÞ ¼
X1
k¼0

D2k cosðkhÞ: ð65Þ

Hence, KI ¼ KIs and KII ¼ KIIs represent symmetric stress intensity factors. If the odd functions are selected

from B1ðhÞ, it can yield the out-of-plane bending case given by

B1ðhÞ ¼ B1aðhÞ ¼
X1
k¼1

D1 sinðkhÞ: ð66Þ

Here KI ¼ KIa and KII ¼ KIIa are anti-symmetric stress intensity factors.

(ii) Penny shaped anticrack or perfectly bonded thin rigid inclusion:

Substitution of Eqs. (53a,b) into Eq. (9) yields the following characteristic equation:

sinð2spÞ ¼ 0; ð67Þ

which yields the minimum root (eigenvalue), contributing to the singular stresses, s ¼ 1=2. The singular

stress distribution in the vicinity of the circular tip of a penny shaped crack, i.e., q � a, can, therefore, be
expressed as follows:

rqðq;/; hÞ ¼
KðiÞ

I ðhÞffiffiffiffiffiffiffiffi
2pq

p ð7� 8mÞ
4

cos
3/
2

� ��
þ 5

4
cos

/
2

� ��

� KðiÞ
II ðhÞffiffiffiffiffiffiffiffi
2pq

p ð5� 8mÞ
4

sin
3/
2

� ��
þ 5

4
sin

/
2

� ��
; ð68aÞ

r/ðq;/; hÞ ¼
KðiÞ

I ðhÞffiffiffiffiffiffiffiffi
2pq

p
�
� ð7� 8mÞ

4
cos

3/
2

� �
þ 3

4
cos

/
2

� ��

þ KðiÞ
II ðhÞffiffiffiffiffiffiffiffi
2pq

p ð5� 8mÞ
4

sin
3/
2

� ��
� 3

4
sin

/
2

� ��
; ð68bÞ

sq/ðq;/; hÞ ¼
KðiÞ

I ðhÞffiffiffiffiffiffiffiffi
2pq

p
�
� ð5� 8mÞ

4
cos

3/
2

� �
þ 1

4
cos

/
2

� ��

þ KðiÞ
II ðhÞffiffiffiffiffiffiffiffi
2pq

p
�
� ð7� 8mÞ

4
sin

3/
2

� �
þ 1

4
sin

/
2

� ��
; ð68cÞ

rhðq;/; hÞ ¼
2mKðiÞ

I ðhÞffiffiffiffiffiffiffiffi
2pq

p cos
/
2

� �
� 2mKðiÞ

II ðhÞffiffiffiffiffiffiffiffi
2pq

p sin
/
2

� �
ð68dÞ
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and

Uqðq;/; hÞ ¼
KðiÞ

I ðhÞ
G

ffiffiffiffiffiffi
q
2p

r
ð7� 8mÞ

4
cos

3

2
/

� ��
þ ð5� 8mÞ

4
cos

/
2

� ��

� KðiÞ
II ðhÞ
G

ffiffiffiffiffiffi
q
2p

r
ð5� 8mÞ

4
sin

3/
2

� ��
þ ð5� 8mÞ

4
sin

/
2

� ��
; ð69aÞ

U/ðq;/; hÞ ¼ �KðiÞ
I ðhÞ
G

ffiffiffiffiffiffi
q
2p

r
ð7� 8mÞ

4
sin

3

2
/

� ��
þ ð7� 8mÞ

4
sin

/
2

� ��

� KðiÞ
II ðhÞ
G

ffiffiffiffiffiffi
q
2p

r
ð5� 8mÞ

4
cos

3/
2

� ��
þ ð7� 8mÞ

4
cos

/
2

� ��
; ð69bÞ

where

KðiÞ
j ðhÞ ¼ KðiÞ

js ðhÞ þ KðiÞ
ja ðhÞ; j ¼ I; II: ð70Þ

In the above equations,

KðiÞ
I ðhÞ ¼ �2

ffiffiffiffiffiffi
2p

p
A4B1ðhÞ; ð71aÞ

KðiÞ
II ðhÞ ¼ �2

ffiffiffiffiffiffi
2p

p
A3B1ðhÞ: ð71bÞ

Thus, the stress intensity factors for mode j ¼ I, II can be separated into symmetric (KðiÞ
js , j ¼ I, II) and anti-

symmetric (KðiÞ
ja , j ¼ I, II) parts in accordance with B1ðhÞ in Eq. (52) assuming B1sðhÞ and B1aðhÞ, given by

Eqs. (65) and (66), respectively.

(iii) Penny shaped thin transversely rigid inclusion (frictionless planar slip permitted):

Substitution of Eqs. (53b) and (54c) into Eq. (10) yields the characteristic equation

cosð2spÞ ¼ 0: ð72Þ
The lowest two roots (eigenvalues) are s ¼ 1=4 and s ¼ 3=4.

(iv) Penny shaped thin rigid inclusion in part perfectly bonded, the remainder with slip (Fig. 2):
The first two conditions of Eq. (11b) yield the boundary condition

1

q
oUq

o/
¼ 0; at h ¼ 	p: ð73Þ

Substitution of Eqs. (53a,b) into Eqs. (11) and (73) yields the characteristic equation

cosðspÞ ¼ 0; ð74Þ

which gives the minimum root s ¼ 1=2 for the mode II. The mode II stress intensity factor KII can easily be

derived. The singular stress distribution in the vicinity of the front separating the perfectly bonded region to

its planar slipping counterpart, can, therefore, be expressed as follows (q � a):

rqðq;/; hÞ ¼
KðiÞ

II ðhÞffiffiffiffiffiffiffiffi
2pq

p ð7� 4mÞ
4

sin
3/
2

� ��
� 5

4
sin

/
2

� ��
; ð75aÞ

r/ðq;/; hÞ ¼ �KðiÞ
II ðhÞffiffiffiffiffiffiffiffi
2pq

p ð7� 4mÞ
4

sin
3/
2

� ��
þ 3

4
sin

/
2

� ��
; ð75bÞ

sq/ðq;/; hÞ ¼
KðiÞ

II ðhÞffiffiffiffiffiffiffiffi
2pq

p ð7� 4mÞ
4

cos
3/
2

� ��
þ 1

4
cos

/
2

� ��
; ð75cÞ
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rhðq;/; hÞ ¼ � 2mKðiÞ
II ðhÞffiffiffiffiffiffiffiffi
2pq

p sin
/
2

� �
; ð75dÞ

and

Uqðq;/; hÞ ¼
KðiÞ

II ðhÞ
G

ffiffiffiffiffiffi
q
2p

r
ð7� 4mÞ

4
sin

3/
2

� ��
� ð5� 8mÞ

4
sin

/
2

� ��
; ð76aÞ

U/ðq;/; hÞ ¼
KðiÞ

II ðhÞ
G

ffiffiffiffiffiffi
q
2p

r
ð7� 4mÞ

4
cos

3/
2

� ��
� ð7� 8mÞ

4
cos

/
2

� ��
; ð76bÞ

where KðiÞ
II ðhÞ is defined as in the Case (ii) above.

(v) Penny shaped thin rigid inclusion alongside penny shaped crack:

Substitution of Eqs. (53a,b) and (54b,c) into Eqs. (12a) and (12b), respectively, yields the following

characteristic equation:

cosð4spÞ ¼ �ð8m2 � 12m þ 5Þ
3� 4m

; ð77Þ

which has two pairs of complex roots (eigenvalues) contributing to singular stresses

s ¼ sr þ isi; ð78Þ

ðaÞ sr ¼
1

4
; si ¼ 	 1

4p
cosh�1 C2 þ 1

2C

� �
; ð79aÞ

ðbÞ sr ¼
3

4
; si ¼ 	 1

4p
cosh�1 C2 þ 1

2C

� �
; ð79bÞ

where

C ¼ 3� 4m: ð80Þ
It may be noted that Eq. (77) is identical to the plane strain version of Eq. (17) for clamped-free case of

Williams (1952), obtained by setting a ¼ 2p, and replacing r ¼ m=ð1þ mÞ by m.

6. Summary and conclusions

An eigenfunction expansion method is presented to obtain three-dimensional asymptotic stress fields in

the vicinity of the front of a penny shaped discontinuity, e.g., crack, anticrack (infinitely rigid lamella), etc.,

subjected to the far-field torsion (mode III), extension/bending (mode I) and sliding shear/twisting (mode
II) loadings. A local orthogonal curvilinear coordinate system (q;/; h), is selected to describe the local

deformation behavior in the vicinity of the circular tip of the afore-mentioned penny shaped discontinuity.

One of the components of the Euclidean metric tensor, namely g33, is approximated in the derivation of the

kinematic relations and the resulting governing system of three partial differential equations. This as-

sumption is consistent with the objective of investigation of the boundary layer effect caused by the presence

of a penny shaped crack or anticrack in line with the Griffith–Irwin theory. Because of this approximation,

the computed results are valid only in the immediate neighborhood of the circular tip of the penny shaped

discontinuity.
Five different discontinuity-surface boundary conditions are considered: (i) penny shaped crack, (ii)

penny shaped anticrack or perfectly bonded thin rigid inclusion, (iii) penny shaped thin transversely rigid
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inclusion (frictionless planar slip permitted), (iv) penny shaped thin rigid inclusion in part perfectly bonded,

the remainder with frictionless slip, and (v) penny shaped thin rigid inclusion alongside penny shaped crack.

The computed stress singularity at the tip of a penny shaped crack is identical to its counterpart due to Sack

(1946) and Sneddon (1946), who, as mentioned earlier, investigated it under far-field mode I loading
condition. This lends confidence to the validity of the procedure employed here.

The circular tip of a penny shaped anticrack (perfectly bonded thin infinitely rigid inclusion) behaves like

its crack counterpart as far as the stress singularity is concerned. This explains the initiation of failure from

thin rigid inclusions both in the form of highly stiff ceramic platelet reinforcements and embrittlements,

such as hydrogen diffused inside a metal lattice or grain boundary. The main difference is, however, that all

the stress components at circular tip of an anticrack depend on Poisson�s ratio under modes I and II.

In regards to the computed eigenvalues (related to the strength of the stress singularity) and eigen-

function coefficients (related to the stress intensity factors whenever applicable), a penny shaped anticrack
(Case (ii)) behaves similar to a corresponding crack in modes I, II, III, and the standard fracture mechanics

procedures are applicable here. This is also in agreement with experimentally observed crack initiation

and propagation from the regions of platelet reinforcement and HE. In the case of a penny shaped thin

transversely rigid inclusion (Case (iii)), the stress singularity in mode I loading is more severe, while mode

III behavior is similar to the second case. As regards the case of a penny shaped thin rigid inclusion in part

bonded to the matrix, the remainder with frictionless slip (Case (iv)), the mode I crack initiation and

propagation from the junction between the bonded and slipping parts of the circular thin rigid inclusion is

unlikely, while mode II and mode III cracks are expected to be initiated at this site. In the case of a penny
shaped thin rigid inclusion located alongside a crack (Case (v)), the mode I, II eigenvalues are complex, the

real parts of which are identical to the corresponding eigenvalues for the Case (iii) discussed above.
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